Elektronika.lt
 2024 m. lapkričio 20 d. Projektas | Reklama | Žinokite | Klausimai | Prisidėkite | Atsiliepimai | Kontaktai
Paieška portale
EN Facebook RSS

 Kas naujo  Katalogas  Parduotuvės  Forumas  Tinklaraščiai
 Pirmas puslapisSąrašas
 NaujienosSąrašas
 StraipsniaiSąrašas
 - Elektronika, technika
 - Kompiuterija
 - Telekomunikacijos
 - Įvykiai, visuomenė
 - Pažintiniai, įdomybės
 Vaizdo siužetaiSąrašas
 Nuolaidos, akcijosSąrašas
 Produktų apžvalgosSąrašas
 Naudingi patarimaiSąrašas
 Vykdomi projektaiSąrašas
 Schemų archyvasSąrašas
 Teorija, žinynaiSąrašas
 Nuorodų katalogai
 Įvairūs siuntiniai
 Bendravimas
 Skelbimai ir pasiūlymai
 Elektronikos remontas
 Robotų kūrėjų klubas
 RTN žurnalo archyvas






 Verta paskaityti
Lapkričio 20 d. 14:31
Odos vėžio nustatymas naminiams gyvūnams – KTU doktorantė siekia sukurti diagnostinę metodiką pasitelkiant DI
Lapkričio 20 d. 11:49
Sukčiai vis intensyviau taikosi į pirkėjus: kaip atpažinti netikras akcijas ir apsaugoti savo finansus?
Lapkričio 20 d. 08:24
Užnuodytas dirbtinis intelektas: ar nusikaltėliai algoritmų neatgręš prieš mus?
Lapkričio 19 d. 20:29
Pristatytas „Huawei Watch Ultimate“: išskirtinės funkcijos žaidžiantiems golfą bei mėgstantiems keliauti
Lapkričio 19 d. 17:22
Mokslininkai atrado, kad lazerio šviesa gali mesti šešėlį
Lapkričio 19 d. 14:39
Kaip sukurti vizualiai patrauklią „Instagram“ verslo paskyrą?
Lapkričio 19 d. 11:29
KTU profesorius: ar e. sportas gali tapti tradicinio sporto alternatyva?
Lapkričio 19 d. 08:23
Telefoniniai sukčiai nestabdo: vien pirmąją lapkričio savaitę išviliota beveik 100 tūkst. eurų
Lapkričio 18 d. 20:24
Elektromobilis šaltuoju metų laiku: kaip prailginti nuvažiuojamą atstumą atvėsus orams?
Lapkričio 18 d. 17:35
Dirbtinis intelektas keičia energetikos ateitį: galimybės, iššūkiai ir etiniai aspektai
FS25 Tractors
Farming Simulator 25 Mods, FS25 Maps, FS25 Trucks
ETS2 Mods
ETS2 Trucks, ETS2 Bus, Euro Truck Simulator 2 Mods
FS22 Tractors
Farming Simulator 22 Mods, FS22 Maps, FS25 Mods
VAT calculator
VAT number check, What is VAT, How much is VAT
LEGO
Mänguköök, mudelautod, nukuvanker
Thermal monocular
Thermal vision camera,
Night vision ar scope,
Night vision spotting scope
FS25 Mods
FS25 Harvesters, FS25 Tractors Mods, FS25 Maps Mods
Dantų protezavimas
All on 4 implantai,
Endodontija mikroskopu,
Dantų implantacija
FS25 Mods
FS25 Maps, FS25 Cheats, FS25 Install Mods
GTA 6 Weapons
GTA 6 Characters, GTA 6 Map, GTA 6 Vehicles
FS25 Mods
Farming Simulator 25 Mods,
FS25 Maps
Reklama
 Straipsniai » Kompiuteriai, IT Dalintis | Spausdinti

Dirbtinio intelekto dėmesys krypsta į „pakraščio“ kompiuteriją

Publikuota: 2022-01-06 12:42
Tematika: Kompiuteriai, IT
Skirta: Profesionalams
Inf. šaltinis: Pranešimas žiniasklaidai

Savaeigiai mąstantys automobiliai, implantai, pranešantys apie žmogaus organizmo būseną ir įspėjantys, kada jau laikas kreiptis į gydytoją, protingi ir patys save tobulinantys mechanizmai ir t. t. Jeigu tai dar ne realybė, tuomet – labai netolima ateitis, neišvengiamai susijusi su dirbtiniu intelektu ir vadinamuoju mašininiu mokymusi.

 Rodyti komentarus (0)
Įvertinimas:  1 2 3 4 5 

Savaeigiai mąstantys automobiliai, implantai, pranešantys apie žmogaus organizmo būseną ir įspėjantys, kada jau laikas kreiptis į gydytoją, protingi ir patys save tobulinantys mechanizmai ir t. t. Jeigu tai dar ne realybė, tuomet – labai netolima ateitis, neišvengiamai susijusi su dirbtiniu intelektu (DI) ir vadinamuoju mašininiu mokymusi (MM): dirbtinio intelekto kryptimi, kuri leidžia tikėtis, kad netolimoje ateityje kompiuteriai, naudodami milžinišką kiekį sukauptų duomenų, patys juos analizuos, darys išvadas ir patars.

Dirbtinio intelekto dėmesys krypsta į „pakraščio“ kompiuteriją
Asociatyvi „Pixabay“ nuotr.

Vilniaus Gedimino technikos universiteto („Vilnius Tech“) Informacinių sistemų katedros profesorius habil. dr. Antanas Čenys sako, kad DI ir MM pažangos prasme pasaulis dabar yra toje panašioje technologijų perversmo stadijoje, kai XVIII amžiuje buvo išrastas garo variklis.

„Jau esame išradę, tik klausimas – kaip panaudoti. Prisiminkime, su garo varikliu taip pat buvo sprendžiami fundamentalūs klausimai. Laivuose svarbiausia buvo, kad variklis būtų galingas. Traukinių lokomotyvuose, o vėliau – automobiliuose, kad būtų ne tik galingas bet ir, palyginti, kompaktiškas, pramonėje – kad būtų ne tik galingas bet ir atitiktų individualizuotus gamybos poreikius“, – kalba prof. A Čenys.

Dabar, anot jo, sprendžiami panašūs uždaviniai – priklausomai nuo to, kur ketiname taikyti DI ir MM – turime priimti adekvačius sprendimus. Tačiau akivaizdu – MM padarys pramonės procesus greitesnius ir tikslesnius.

„Pakraščio“ duomenų intelektas

Tačiau būtina sutvarkyti teisinį reguliavimą, kuris gali tapti viena iš svarbiausių kliūčių dar spartesniam DI taikymui.

Europos Komisija (EK) 2021 m. pabaigoje pristatė labai svarbų dokumentą, susijusį su DI plėtra – Europos duomenų strategiją.

„Tenka pripažinti, kad Europos Sąjunga (ES) pralaimėjo „laukinio kapitalizmo“ kovą dėl internetinių paslaugų dominavimo tokioms pasaulinėms Jungtinių Amerikos Valstijų (JAV) kompanijoms, kaip „Microsoft“, „Amazon“, „Google“, „Facebook“. Ir iš esmės nebeturi artimiausiu metu galimybių sukurti konkurencingų analogų nei joms, nei į šią konkurencinę kovą įsikibusioms Kinijos valstybinėms kompanijoms. Tačiau Europa turi milžinišką mokių vartotojų rinką ir, pasitelkusi duomenų apdorojimo bei teisinio reguliavimo strategiją, turi visas galimybes susigrąžinti Europai deramą vietą, kai kalbama apie duomenų naudojimą, dirbtinį intelektą ir mašininį mokymąsi“, – svarsto „Vilnius Tech“ ekspertas.

Jis pasakoja, kad ES kreipia dėmesį į nelabai naują, bet naujai atrastą DI sritį „edge computing“ arba „pakraščio“ kompiuterijos sritį.

Visuotinai priimta vertinti, kad šiuo metu apie 80 proc. asmens duomenų yra laikomi kažkur „debesų“ kompiuterijoje. Apie 20 proc. duomenų žmonės vis dar išsaugo savo asmeninėse talpyklose – telefonuose, kompiuteriuose ir kituose įrenginiuose, jais nesidalija. Tai ir yra vadinamieji „pakraščio duomenys“.

„Imkime savavaldį (angl. self driving, SD) automobilį. Jis privalės naudotis savo turimais duomenims, nes neturės laiko ir prabangos laukti, kol dėl ryšio ar per lėtai kraunamų duomenų jam reikės pasirinkti maršrutą, neatsitrenkti į medį ar sustoti toje vietoje, kur kas rytą kelią pereina močiutė nešanti pamelžtą pieną. Jeigu automobilis lauks, kol bus išanalizuoti visi debesų kompiuterijoje esantys SD automobilių duomenys – jis numuš močiutę su visu pienu“, – pastebi prof. habil. dr. A. Čenys.

SD automobiliui didžiąja dalimi nebūtini visi pasaulyje esantys SD automobilių „debesyse“ kaupiami duomenys – pakanka duomenų, kuriuos jis pats kaupia, atsižvelgdamas į nuolat pasikartojantį maršrutą ir mokydamasis apie jo kelyje pasitaikančias kliūtis.

Paprasčiau tariant, jeigu Vilniuje 90 proc. jūsų kasdienės kelionės automobiliu sudaro maršrutas iš Žvėryno į Antakalnį – kodėl jūsų SD automobilis turėtų analizuoti savo pusbrolio duomenis, kuris kasdien važinėja, tarkime, Niujorke, iš Kvinso ar Bruklino į Manhateną?

„Duomenų generavimas visuomet buvo „pakraštyje“, o kuo toliau – tuo didesnis duomenų kiekis ir liks „pakraštyje“, nebus nusiųstas į „debesis“. Kompiuterių resursai vis tobulėja ir vis daugiau mašininio mokymosi algoritmų gali būti taikomi tame pačiame SD automobilyje“, – kalba ekspertas.

Ekspertų nuomone, netolimoje ateityje, galbūt per artimiausius penkerius metus, duomenų kaupimo „debesyse“ ir „pakraštyje“ proporcija smarkiai pasikeis: dabartinė 80 proc. ir 20 proc. pakis ir taps 20 proc. ir 80 proc. Nors šiandien tuo sunku patikėti.

Prof. habil. dr. A. Čenys atkreipia dėmesį, kad tai ypač svarbu medicinos srityje, kur susiduriama su keliomis duomenų apsaugos problemomis.

Pirmiausia, vis daugiau naudojama įvairiausių daviklių, sekančių organizmo veiklą ir įspėjančių apie pavojų sveikatai. Esant tam tikroms aplinkybėms – ne visuomet DI turės laiko analizuoti „debesyse“ esančius duomenis, kad galėtų įspėti apie žmogaus organizmui gresiantį pavojų. Todėl davikliai naudos asmeninius „pakraščio“ duomenis.

Duomenų apsaugos problema

„Duomenys yra vertybė ir dažnoje šiuolaikinėje kompanijoje kliento duomenys yra didesnė vertybė už jos gaminamą produkciją. Nes panašų produktą gali pagaminti daug kas, o štai parduoti jį konkrečiam klientui – jau yra gebėjimai, kurie priklauso nuo rinkos poreikio ir, žinoma – nuo turimų to kliento duomenų“, – pabrėžia A. Čenys ir prognozuoja, kad netolimoje ateityje žmonės (vartotojai) supras, asmeninių duomenų vertę ir, kad juos galima „parduoti“.

Tuomet susidursime su klausimu, kas yra tikrasis „pakraščio“ duomenų savininkas.

Jeigu pavyzdžiu imtume „Tesla“ automobilį, kaupiantį vairavimo ir maršruto duomenis – kas tampa tų duomenų savininku: kompanija „Tesla“, automobilio savininkas ar duomenis kaupianti bendrovė? Kartais tai yra valstybė, ypač, kai kalbama apie tokias šalis kaip Kinija.

„Tikriausiai Kinijos valdžia labai nenorės, kad „Tesla“ kauptų duomenis, kokiais maršrutais pačioje Kinijoje važinėja „Tesla“ automobiliai“, – svarsto prof. habil. dr. A. Čenys.

Kita vertus, žmogus, Lietuvoje, būdamas „Tesla“ savininku, tikriausiai nenorėtų, kad kompanija ar Lietuvos valdžia, ar dar koks nors ryšį užtikrinantis operatorius kauptų duomenis apie jo maršrutus, vairavimo įpročius ar – galų gale, nedidelius nusižengimus, kurių pasitaiko kelyje.

„Duomenų nuosavybės klausimas tampa labai svarbus. Kaip bus reguliuojami duomenų keitimosi santykiai, kaip bus generuojami duomenys, kaip bus prekiaujama duomenimis – kol kas atsakymų į šiuos klausimus nėra“, – pastebi prof. A. Čenys.

Anot jo, ES Bendrasis duomenų apsaugos reglamentas (BDAR), kuriame aprašomi duomenų privatumo reikalavimai, yra geras pavyzdys, nors šiuo metu į jį žiūrima kaip į eilinį biurokratinį dokumentą.

Pandemija skatina keistis duomenimis

„BDAR užkerta kelią asmeninės informacijos sklaidai, tačiau asmeniui sutinkant dalintis duomenimis, jais būtų galima laisvai naudotis dėl bendro gėrio“, – atkreipia dėmesį ekspertas.

„Vilnius Tech“ eksperto teigimu, toks modelis galėtų veikti pasaulyje siaučiant COVID-19 pandemijai.

Medicinos duomenys – viena iš jautriausių sričių. Daugelyje gydymo įstaigų esantys pacientų asmeniniai įrašai, dėl puikiai suprantamų priežasčių, yra saugomi ir neteikiami be asmens sutikimo. Medicinos įstaigos negali jais keistis, nors kai kurie duomenys tikrai galėtų tarnauti bendram gėriui – atpažįstant ligas, nustatant gydymo ir vaistų efektyvumui ir t. t.

DI sprendimas, kurį šiuo metu galima aptikti „federated mashine learning“ (FML) terminu, padeda išspręsti šią problemą, nes MM algoritmai geba naudoti decentralizuotus duomenis, kurie sukaupti atskiruose duomenų kaupikliuose (serveriuose) ir daryti išvadas.

Paprasčiau sakant, klinika yra sukaupusi pacientų duomenis, tačiau negali jais dalintis dėl privatumo reikalavimų. Tačiau gali pasidalinti apibendrintomis savo tyrimų išvadomis.

Tokio algoritmo pagalba galima kaupti daugybės skirtingų klinikų duomenis, DI juos analizuos ir galiausiai – pasaulis galės naudotis apibendrintais rezultatais.

Tačiau, pastebi prof. A. Čenys, dar pernelyg anksti būtų manyti, kad tokiu būdu net ir COVID-19, kuriam šiuo metu skiriamas didžiausias medicinos mokslo dėmesys, vien pasitelkus duomenų analizę galima įveikti. Tiesiog, kol kas duomenų kaupimas vis dar yra labai skirtingas.

Tarkime, net ir pasiskiepijusių asmenų proporciją vienos šalys skaičiuoja nuo gyventojų skaičiaus, kitos – skelbia duomenis nuo skaičiaus žmonių, kuriuos privaloma paskiepyti. Dar labiau metodologija skiriasi, kai pradedami analizuoti sergantieji ar jų užsikrėtimo aplinkybės.

Kompiuteris gali daryti išvadas, tačiau jam vis dar reikia gausybės duomenų, kuriuos jis gali palyginti. Nors jis ir geba juos apskaičiuoti ir analizuoti labai greitai, nustatyti kai kurias tendencijas, kurių žmogaus protas nesuvokia, jis vis dar atsilieka nuo žmogaus gebėjimų.

„Skirtingai nei kompiuteris, žmogus sugeba spręsti tas užduotis, kai nelabai žino, ko jis nori. Kai ieško to, kam aiškaus apibrėžimo nėra“, – kalba prof. A. Čenys.

Todėl kompiuteris žmogaus gebėjimų pilnai negali pakeisti, tačiau ateityje labai smarkiai paveiks verslą ir žmonių gyvenimą, kai mašininis mokymasis bus pradėtas plačiai taikyti praktikoje.

„Tie, kurie atsiliks – tiesiog pralaimės konkurencinę kovą“, – konstatuoja profesorius.

Mašininiam mokymuisi skirtą pranešimą „Vilnius Tech“ profesorius A. Čenys skaitė AI BOOST konferencijoje, pernai vykusioje Vilniuje, kuri buvo skirta dirbtinio intelekto ekosistemai stiprinti.

AI BOOST yra didžiausia dirbtinio intelekto konferencija Šiaurės Rytų Europoje, suburianti pasaulinę dirbtinio intelekto sričių bendruomenę.




Draudžiama platinti, skelbti, kopijuoti
informaciją su nurodyta autoriaus teisių žyma be redakcijos sutikimo.

Global electronic components distributor – Allicdata Electronics

Electronic component supply – „Eurodis Electronics“

LOKMITA – įvairi matavimo, testavimo, analizės ir litavimo produkcija

Full feature custom PCB prototype service

GENERAL FINANCING BANKAS

Mokslo festivalis „Erdvėlaivis Žemė

LTV.LT - lietuviškų tinklalapių vitrina

„Konstanta 42“

Technologijos.lt

Buitinė technika ir elektronika internetu žemos kainos – Zuza.lt

www.esaugumas.lt – apsaugok savo kompiuterį!

PriedaiMobiliems.lt – telefonų priedai ir aksesuarai

Draugiškas internetas


Reklama
‡ 1999–2024 © Elektronika.lt | Autoriaus teisės | Privatumo politika | Atsakomybės ribojimas | Reklama | Turinys | Kontaktai LTV.LT - lietuviškų tinklalapių vitrina Valid XHTML 1.0!
Script hook v, Openiv, Menyoo
gta5mod.net
FS25 Mods, FS25 Tractors, FS25 Maps
fs25mods.lt
Optical filters, UV optics, electro optical crystals
www.eksmaoptics.com
Reklamos paslaugos
SEO sprendimai

www.addad.lt
Elektroninių parduotuvių optimizavimas „Google“ paieškos sistemai
www.seospiders.lt
FS22 mods, Farming simulator 22 mods,
FS22 maps

fs22.com
Reklama


Reklama