Niujorko optikos instituto fizikai išsiaiškino, kad skystas vanduo gali spinduliuoti terahercų diapazone. Tai keista, nes vanduo praktiškai visą teraherzų dažnio spinduliavimą sugeria, ir anksčiau manyta, kad jį naudoti kaip tokio spinduliavimo šaltinį neįmanoma. Darbas publikuotas „Applied Physics Letters“.
Terahercinis spinduliavimas – 0,1 mm – 1 mm bangos ilgio elektromagnetinis spinduliavimas. Tai gan ilgos bangos, elektromagnetinių bangų spektre esančios tarp infraraudonojo ir mikrobangų diapazono. Galingi terahercinio spinduliavimo šaltiniai yra dalelių greitintuvai, girotronai ir galingi lazeriai. Nedidelės galios terahercinį spinduliavimą galima kurti elektrooptiniu efektu, potencialų šaltinį sužadinant femtosekundiniu lazeriu. Šiuo atveju kaip šaltiniai paprastai naudojami kietieji kūnai, plazma ir netgi vandens garai. Tuo tarpu buvo manoma, kad skysčių, įskaitant vandenį, panaudoti neįmanoma, nes jie spinduliavimą šiame diapazone praktiškai visiškai sugeria.
Vandens terahercinio spinduliavimo sužadinimo ir registravimo eksperimentinio įtaiso schema ©Qi Jin et al./ „Applied Physics Letters“, 2017
Naujuoju tyrimu fizikams pavyko šią problemą išspręsti ir sukurti įtaisą, kuriuo užregistravo vandens terhaercinį spinduliavimą. Kad sužadintojo spinduliavimo pats vanduo nesugertų, kaip šaltinis buvo naudojamas plonas (177 µm) vandens sluoksnis. Spinduliavimo sužadinimui mokslininkai naudojo į vandens plėvelę sufokusuotą femtosekundinį lazerį.
Užregistruotų terhaercinių bangų dažnis – nuo 0,1 iki 3 THz. Paaiškėjo, kad vandens spinduliavimo savybės gan pastebimai skiriasi nuo kuriamo, tarkime, oro plazma. Visų pirma, jis nėra monochromatinis. Antra, kuriamo terahercinio spinduliavimo parametrai gan stipriai priklauso nuo sužadinančio spinduliavimo parametrų: kuriamų bangų poliarizacija tiesiogiai priklauso nuo sužadinančiojo spinduliavimo poliarizacijos, o terahercinio spinduliavimo energija auga, kuo ilgiau veikia lazeris ir tiesiogiai priklauso nuo sužadinančiojo lazerio spindulio energijos. Mokslininkai tvirtina, kad šių savybių žinomais terahercinio spinduliavimo kūrimo mechanizmais aprašyti negalima, tad tai pastūmės toliau tirti skystus terhaercinio ir infraraudonojo spinduliavimo šaltinius.
Tyrėjai mano, kad apie terahercinio spinduliavimo šaltinių skysčio pagrindu kūrimą kalbėti kol kas per anksti, tačiau jei anksčiau inžinieriai vandens naudojimo tokiuose įrenginiuose stengėsi išvengti, tai dabar galima jį laikyti perspektyviu tokio spinduliavimo šaltiniu.
Jei mokslininkams pavyks sukurti terahercinio spinduliavimo šaltinį vandens pagrindu, tai padėtų supaprastinti ir sumažinti prietaisus, kurie paskui galėtų būti naudojami tiek moksliniais tikslais, pavyzdžiui, spektroskopijoje ar kosmoso tyrimuose, tiek ir žemiškesniems tikslamas, tarkime, bagažo skenavimui ar laikančiųjų konstrukcijų mechaninio stiprumo vertinimui ir net viščiukų embrionų lyties nustatymo.